
.? D 

NASA Contractor Report 178381 

LEAST SQUARES LINEAR LAGS 
AND LIMITED MEMORY FILTERS 

:NASA-CR-178381) ZEBST SQUARES LINEAB LAGS NP8-12339 
B I D  LIHITED FIEIIORP FILTERS (Waqner [ D a n i e l  
H.) Associates) 29 p A v a i l :  NTIS HC 
A03/nP A01 C S C L  12A Unclas  

G 3 / 6 5  0105441 

Joseph H.  Discenza 

DANIEL H. WAGNER, ASSOCIATES, INC.  
Hampton, V i r g i n i a  

Purchase Order L- 16074C 
October 1987 

National Aeronautics and 
Space Administration 
Langley Research Center 
Hampton,Virginia 23665 



ABSTRACT 

Pure autoregressive (AR) models which are linear in the short term, that is when a 

variable can be predicted by linear regression on a limited number of past observations, are 

discussed. When evenly-spaced observations are available, a fixed set of AR coefficients 

can be calculated independent of the data. For filtering purposes, such a lag structure can 

be implemented recursively with an efficient algorithm. The method of computing variance 

recursively is also derived. A complete algorithm is presented in the appendix. 
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Many important problems require the prediction of a variable sequentially based 

I only on previous observations on that variable. The classic autoregressive (AR) model is 

Wk being a second moment ergodic white noise sequence (see for instance Group E19841 

Chapter 8). Several models with a different ai are well known. Irving Fisher (1) studied 

a distributed lag structure with lag length n, of the following farm: 

This yields lag coefficients ai, 

n+ 1 -i ai=- 2( n+ 1 -i) 
n =nO 

which insures that 

(3) 
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The average lag (defined as the sum of the weighted time periods) is 

n 

- 
a= 

n 
iai = 

C (ni+i-i2) 
i=l 

n 
ci 
i= 1 

Then 
n 

ci 
i=l 

Another commonly used expectations model is called naive or static expectations, 

which is the Fisher equation with n=l. 

Other forms of expectations operators, which have been investigated principally 

with reference to price expectations, include extrapolative, adaptive, and various ad hoc 

distributed lags. Some empirical tests have been done: see Turnovsky (3) and Turnovslq 

and Wachter (4). 

. _  
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An alternative method of forming expectations is by defining a linear trend using a 

specific number of observations, i.e.: 

e yk =ae + be Xk + Ek 

where ae and be are estimated from the data. 

By choosing the x scale so that X k d  and the independent variables of the past 
observations are Xk-i = -i, the model becomes yk = ae + b e 0 = ae. We now show how to e 

obtain the prediction for yk without actually estimating a or b, as follows. The least 

squares estimates of a and b are: 

and 

Letting D = - (Xxi)' and substituting D into (9) and then into (10) yields 
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Next, reorder and expand terms in (1 1) to obtain: 

1 y2 + .....+ ;; Yn 1 1 ae = ;y1 + .......................... 

Now we wish to obtain ae = ary l  + q y 2  +.....+ CCnyn. 

Summing the coefficients of yj above, we obtain the required AR coefficents which 

are, of course, independent of y: 

n \2 n 

Substituting the equations for sums of numbers and sums of squares into (13) 

yields a simplified expression for the AR coefficients: 

3(n+l) 2(2n+1-3’) 
aj=f [ 1+ ’0- A]=+ 
The important feature of this model is that it provides an AR lag structure whose . 

coefficients follow directly from the hypothesis of the limited memory linear least squares 

model, and depend only on the order of the model and not on the data. Table 1 provides 

the coefficents from (14) for lag lengths up to 8. 
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TABLE 1. Linear Least Squares Expectations Lag Coefficients 
Age of Observation (in Time Periods) 

- 
2 

3 

4 

5 

6 

7 

8 

1 2 3 4 5 6 7 8 

2 -1 

4/3 1/3 -2/3 

1 1/2 0 -1/2 

8/10 5/10 2/10 -1/10 -4/10 

2/3 7/15 4/15 1/15 -2/15 -1/3 

4/7 3/7 2/7 1/7 0 -1/7 -u7 

1/2 11/28 2/7 5/28 1/14 -1/28 -1/7 -1/14 
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The average lag of the least squares expectations operator is 

n n 
2i  (2n + 1 - 3i) 

n(n- 1) a = zai = c 
i=l i=l 

- - 2(2n+l)*  n ( + l )  6 *n(n+l ) (2n+l )  
n(n-1) 2 n(n- 1) 6 

= 0. 
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Coefficients generated by (14) provide least squares expectations for one 

observation after the last. coefficients can also be obtained to predict y further in the 

future. Let m be the number of observations missing between the last observation and the 

prediction period. If the index of the required expectation is zero, then 

where all summations are from m+l to n. 

Then, let 

Substituting for summations using the appropriate equations yields 

8 



With some manipulation, the expression for the lag coefficients for expectations m 

observations forward is then 

For example, if expectations for three periods in the future are needed, and a lag 

length of four is chosen, then n=6 and m=2. Using (13) yields 

= l.6yk-3 + 0.7yk-4 - 0.2Yk-5-1.1Yk-6. 

The sum of the lag weights is the same as when m=O, 

as 

1 n n-m 

C . j =  i=m+l c (E+ 
j=l 

The average lag of the future-period least squares expectations operator calculated 

n-m 

is also zero, but the proof is left to the reader. Table 2 shows coefficients for m=O to 5 and 

order 2 to 5. 

9 



Table 2: Least Squares Expectations Coefficients Where m Periods Are 
Skipped Between the Last Observation and the Prediction. 

Number of Lag Coefficients (n-m) 

0 2  -1 4/3 113 -a3 1 .5 0 -.5 .8 .5 .2 - . l  
1 3  -2 11/6 1/3 -716 1.3 .6 -.1 -.8 1 .6 .2 -.2 
2 4  -3 713 1/3 -5/3 1.6 .7 -.2 -1.1 1.2 .7 .2 -.3 
3 5  -4 17/6 113 -13/6 1.9 .8 -.3 -1.4 1.4 .8 .2 -,4 
4 6  -5 1013 1/3 -8/3 2.2 .9 -.4 -1.7 1.6 .9 .2 -.5 
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In this section we show how the lag operator is implemented recursively, for the 

case m=O. 

e First, find two successive estimates &-le and yk: 

n n- 1 

i= 1 1=1 
yE-1 = c ai Yk-1-i % Yk-1-n + .E (% Yk-1-i 

- 
and 

n n- 1 

i=l i=O 
Y E  = c ai Yk-i = q + l  Yk-1-i 

n- 1 
= a 1  Yk-l+ .x %+l Yk-1-i 

1=1 

The difference between (21) and (22) is 

n-1 

i=l 
e e  

Yk - Yk-1 = a 1  Yk-1 - % Yk-1-n + 

But we note that 

(ai+l - ai Yk-1-io 

Substituting (24) into (23) we obtain the recursive expression 

6 n-1 

1=1 
e e  

Yk = Yk-1 + a1 Yk-1 - a n  Yk-1-n - ~n(n-l) .x Yk-1-i 

The recursion is completed by noting that 
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n- 1 n- 1 
Yk-I-i = 

i=I  i= I 
Y k-2-i + Yk-2 - Yk-1-n 

The recursive approach requires that the n most recent observations be stored, but at 

each iteration only yk-1, yk-2, and Yk-1-n enter the CdCUlatiOnS. Except for startup 

processing (the first n observations) the amount of processing for such a filter is 

independent of the lag period n. An algorithm is provided in the appendix. 

V a r i m e  of the Pre- . .  

We now derive the variance of the prediction, &YE. This variance is determined as 

follows (from Kmenta, p 228). 

= E { [(ae + bexk) - (a + bxk)I2) 

. 
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- 
Now we know from linear regression that, where X'i = Xi- x, 

and 

Cov (ae, be) = -  

L -1 

Substituting, we obtain 

The expression in (29) gives the variance of the predicted man value of y for a 

given xk. Since the actual observed value of y VdeS about the true mean value with 

variance 02 (independent of the variance of ye), the predicted value of an individual 

observation will still be given by but will have variance (hm Draper and Smith, p.24): 
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and since xk = 0, 

Whether (32) or (33) is the appropriate equation will depend on the application. If 

the filter is predicting the mean value of y (such as the actual position of a target) then (32) 

should be used, because the variance can be made arbitrarily small by increasing the 

number of observations. Conversely, if we need to predict the next sbservatl 'oq such as for 

certain search applications, the (33) is used and the minimum variance is 02 no matter how 

many observations are used. In the remaining analysis we will use (33). however the 

development using (32) is nearly identical. 

L 
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I - 
To estimate 02 we use s2, an unbiased estimator where y = yi - y: 

n 

i= 1 

n 

i=l 

r n  n n 1 
1 1  

xi yi + (be)2 c xi2]. 
i= 1 

But we know (see Kmenta, p. 208) that 

n n 
I *  

be z x i 2  = xi yi 
i=l i= 1 

and 

n 
(be)2 c xi2 = be 

i=l i=l 
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So we obtain, 

n 1 

which is a well-known expression for s2. The limited-memory filter is a unique model 
where the Xi are known, therefore, some simplification is possible. First, express 

and subsitute it into (34) to yield, 

Now, it is easy to show that 

which yields 
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For an efficient recursive calculation of s2, we do not wish to calculate the 

summations in (37) each the.  Of course, since n is constant and Xk-i = -i, 

Furthermore, 

n n 
Yk-i = 

1=1 1=1 
Yk-1-i - Yk-1-n + Yk-1 

and 

n n 

Now, to compute the final summation term recursively, we write 

n n 

(39) 

I I  

xi yi = (-i + '+) (Yk-i - 7 )  
i= 1 i=l 
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n n 
= C (-i + '+)yk-i- ;C (-i + n+ 1 

i=l i= 1 

Now, we expand the first tern in (41), as follows, for epochs k and k-1: 

1= I 

Then we subtract, yielding 
~ 

n n n 

I 
Now we write the expression for the cross product term at epoch k and epoch k-1, 

using (41) 

I and 
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Subtracting the last two equations and substituting (39) and (42), we obtain finally, 

which is the last required difference equation. 

The algorithm which implements this recursive model is described in the appendix. 

. .  Tustification for the Model 

Under what circumstance is such a linear model valid? We can think of many real 

world situations where processes are linear (or can be transformed to ones that are) over the 

short term but in the long tem may be very non-linear. One with which we are familiar is a 

linear process whose slope is subject to randomly occurring jumps. Under this 

assumption, we have the rn model, 

yi = a + bxi + q, i i  k-n 

where k-n is the epoch of the most recent jump. Of course, n is the unknown but we can 

estimate its value. This estimate may give us two kinds of problems in the estimation of a 

and b. First, if we choose n too large, and we include data points which are not part of the 

true model, our regression is biased. However, until the next jump occurs, we are at least 
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consistent. On the other hand, if we choose n too small, then we are omitting usable data 

from the regression, which is i@cienf. 

We suggest that it might be possible, given a particular application, to choose n so 

as to minimize the expected total (bias and inefficiency) error. 

Table 3 shows a simulated data set and the results of using the model with oder 

n 4 .  The true model is yi = 18+2i, i=l, ..., 18 and yi = 544, i=19 ,..., 50. The observation 

error introduced in the simulation is normal with 0=3. 

Figure 1 shows the behavior of the model for n=6,8,10, and 15, respectively. 

Note that the calculated variance (using equation (32)) increases for a time (about n 

observations) after the jump at observation 18, an indication that the filter in some sense 

"detects" the jump. 

We should note that much more powerful filters are available to deal with the type 

of data discussed herein, such as Kalman Filters with short- and long-term processes, but 

all such models require considerably more processing and are much more general. The 

filter presented here is narrowly-defined but extremely easy to compute. 
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Number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

22.3367 
24.0347 
29.6256 
28.5831 
27 A 105 
34.6796 
35.4258 
36.9346 
33.2763 
36.8247 
42.0522 
40.1222 
44.3455 
47.5987 
41.1860 
55.5352 
51.9135 
50.4021 
52.7145 
52.8151 
5 1 2435 
45.9523 
47.6973 
49.4900 
46.8479 
45.5741 
42.9773 
40.2959 
44.4757 
39.7585 
38.6393 
39.63 11 
41.7540 
37.8070 
37.6862 
41.9468 
37.6959 
30.6637 
34.6891 
34.5748 
30.1492 
31.6565 
30.3123 
25.7946 
25.7283 
23.4342 
18.8451 
27.1559 
22.6779 
25.5353 

Predict 

39.1537 
38.1588 
38.3724 
41.8262 
42.61 13 
43.8529 
47.5027 
46.8285 
53.2506 
54.5623 
54.3888 
55.7838 
55.3974 
54.3735 
5 1.1269 
46.6388 
47.4743 
46.3428 
44.5775 
42.8569 
40.8748 
41.7626 
39.1273 
37.2192 
37.4178 
38.7905 
38.2805 
38.6149 
38.6889 
38.9533 
34.7433 
33.1207 
32.2185 
30.4034 
29.1756 
27.8916 
26.6604 
25.6085 
22.1803 
18.6698 
20.9714 
20.2484 

m2u 
Simulation Results 

Error Variance 

5.8773 
1.3341 

1.7040 
-3.6797 

-1.7343 
-3.7458 
6.3166 

1.3371 
4.1602 
1.6743 
2.9687 
4.1539 
8.4212 
3.4296 

.6264 

.7688 
1.6002 
2.5610 

-3.6009 
2.0041 
.4880 

-2.41 19 
4.3363 

.9835 
s944 

4.3318 
.9929 

8.2896 
.0542 

2.0692 

-8.7067 

-2.8512 

- 1 A540 

-1.2531 
-1.1367 

2.0970 
.9321 

2.1743 
3.3352 

-8.4860 
-1.7065 
-5.2869 

4.009 
4.358 
3.792 
4.200 
4.368 
3.195 
3.498 
5.834 
9.065 
8.91 1 
9.730 
9.683 
9.419 

10.218 
14.498 

2.465 
2598 
2.556 
1.986 
2147 
2.474 
2.991 
2.134 
1.872 
1.888 
2.721 
2382 
2.383 
3.434 
2.105 
6.192 
5.326 
5.110 
5.333 
4.945 
4.680 
3.552 
3.241 
1.086 
1.590 
5.798 
5.918 

Sigma 

2.434 
2.088 
1.947 
2.049 
2.090 
1.787 
1.870 
2.415 
3.01 1 
2.985 
3.119 
3.112 
3.069 
3.197 
3.808 
1.570 
1.612 
1.599 
1.409 
1.465 
1.573 
1.730 
1.461 
1.368 
1.374 
1.649 
1.543 
1.544 
1.853 
1.451 
2.488 
2.308 
2.260 
2.309 
2.224 
2.163 
1.885 
1.800 
1.042 
1.261 
2.408 
2.433 
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I2IaB.u 
Results of Simulated Data Using Limited-Memory Filter 

I 

Dlcturbmcc . I  c Dlcturbmcc 

.‘ 
True 

I n=6 

I 

I n-8 
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n 

I 
I 

I 
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APPENDIX 

SEQUENTIAL ALGORITHM FOR Ye 

BEGIN 
6 Select n; then, C 0 = 7 n(n- ) 

and 
, i=l ,...,n . 2(n+l-3i) 

n(n-1) a i  = 

Get n observations. 

and 
n- 1 
C Yn-i - 
i=l 

Set k=n+l . 

REPEAT 
Observe y k. 

INC (k,l) 

n- 1 /n-1 \ 
Compute C Yk-1-i = ( C Y k-2-ij + Y k-2 - Yk-1-n * 

i= 1 i= 1 

n- 1 e e  
Compute Yk=Yk-l +alYk-l  -anYk-l-n -co 

END 
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RECURSIVE ALGORITHM FOR VAR (Ye) 

BEGIN 
n(n+l) (2n+1) n(n+l) 2 

6 -4 Compute c1 = & t L  

and 

Get n observations. 

n 

i= 1 
Compute C Yn+l-i 9 

" 2  
Yn+l-i 9 i=l 

and 

Set k = n+l . 
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REPEAT 

Observe y 

INC (k,l) 

Compute 
n n 

Yk-i= c 
i=l i=l 

n 
c 

i=l 

n 
k-1 - c i= 1 

n+l 
Yk-i +nY k-1-n + 7 (Yk-1 - Y k-1-n) 9 

and 

END 
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